What do you mean by multilevel NAND and NOR circuits? Illustrate. Unit-IV What is a Multiplexer? How does it (a) work? What are its applications? Explain. What is a Parallel Adder? Design a 4-bit 8,8 parallel adder.

9. Explain the following

8.

- BCD to seven-segment Decoder (a)
- 8,8 (b) Comparators

Roll No.:

Total No. of Questions: 9]

[Total No. of Pages : 4

97664

BCA 1st Semester (New) (Full & Reappear) Examination, March-2021

LOGICAL ORGANISATION OF COMPUTER-I

Paper-BCA-104

Time: Three Hours]

[Maximum Marks : 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

- Note: Attempt five questions in all, selecting one question from each Unit. Question No. 1 is compulsory. All questions carry equal marks.
- What is Unicode? State its relevance.
 - What is a Full-adder? (b)
 - What is Duality principle? (c)
 - What are Digital Signals? Explain.

97664 6950

(4)

RD-562

97664 6950

(1)

RD-562 P.T.O.

- (e) What are Venn Diagrams?
- (f) Which number system is followed in digital computers and why?
- (g) What is a Normalized Number? Outline its essence.
- (h) What are Demultiplexers? State their importance. 2×8=16

Unit-I

2. (a) Find out the values of X, Y and Z in the following:

$$(AA.C)_{16} = (X)_2 = (Y)_8 = (Z)_{10}$$

- (b) What do wu understand by BCD Codes?

 What is their significance? Illustrate. 12,4
- 3. Explain the following:
 - (a) Character Codes
 - (b) Error Detection and Correction Codes 8,8

Unit-II

- 4. Explain the following:
 - (a) Multilevel NAND and NOR Circuits
 - (b) Boolean Algebra
 - (c) Standard forms of Boolean Functions 5,6,5

97664_6950 (2) **RD-562**

- (a) What is De Morgan's Theorem? How is it useful? Illustrate its use with suitable examples.
 - (b) Simplify the following Boolean expression using K-map:

F (a, b, c, d) =
$$\Sigma$$
 (0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14)

and obtain the expression in SOP and POS. 6,10

Unit-III

- 6. (a) What are AND-OR-INVERT and OR-AND-INVERT implementation? Explain.
 - (b) Design a combinational circuit that receives
 4-bit binary input and produces its 2's
 complement.
 6,10
- 7. (a) What are Universal Gates? Why are these named so? Justify.
 - (b) What is Combinational Circuit? What are its characteristics? Detail out the procedure for design of combinational circuit.

97664 6950 (3) **RD-562** P.T.O.